Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dichloridobis(thiourea-кS)nickel(II)

Hafid Zouihri

Laboratoire Privé de Cristallographie (LPC), Kénitra, Morocco Correspondence e-mail: hafid.zouihri@gmail.com

Received 11 February 2012; accepted 12 February 2012
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.003 \AA$; R factor $=0.017 ; \omega R$ factor $=0.045 ;$ data-to-parameter ratio $=12.8$.

$$
\begin{aligned}
& b=11.8183(5) \AA \\
& c=10.8526(6) \AA \\
& \beta=103.869(2)^{\circ} \\
& V=1015.81(8) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker APEXII CCD detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.322, T_{\text {max }}=0.622$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
All H-atom parameters refined
$w R\left(F^{2}\right)=0.045$
$\Delta \rho_{\text {max }}=0.25$ e \AA^{-3}
$S=1.08$
1695 reflections
132 parameters
10 restraints

> Mo $K \alpha$ radiation
> $\mu=2.79 \mathrm{~mm}^{-1}$
> $T=100 \mathrm{~K}$
> $0.42 \times 0.37 \times 0.17 \mathrm{~mm}$

4883 measured reflections 1695 independent reflections 1678 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

The title complex, $\left[\mathrm{NiCl}_{2}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$, has been synthesized from the previously reported (diaminomethylidene)sulfonium chloride-thiourea (3/2) salt [Zouihri (2012b). Acta Cryst. E68, o257]. The $\mathrm{Ni}^{\mathrm{II}}$ ion is coordinated in a distorted tetrahedral geometry by two molecules of thiourea $[\mathrm{Ni}-\mathrm{S}=2.3079$ (7) and $2.3177(6) \AA$ and two chloride anions $[\mathrm{Ni}-\mathrm{Cl}=$ 2.2516 (7) and 2.2726 (7) Å]. The bond angles at the Ni atom lie between 96.69 (2) and $115.40(3)^{\circ}$, while the dihedral angle between the mean planes of the two thiourea ligands is $6.36(15)^{\circ}$. The crystal structure is characterized by intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, which lead to the formation of two-dimensional networks lying parallel to the $a b$ plane. The networks are linked via classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, forming a three-dimensional arrangement.

Related literature

For the synthesis and the crystal structure of (diaminomethylidene)sulfonium chloride thiourea (3/2), see: Zouihri (2012b). For related structures, see: Ambujam et al. (2007); Zouihri (2012a). For related literature on the coordination complexes of $\mathrm{Ni}^{\mathrm{II}}$ salts with thiourea, see: Asif et al. (2010).

Experimental

Crystal data

$\left[\mathrm{NiCl}_{2}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
Monoclinic, $C c$
$M_{r}=281.85$ $a=8.1578$ (3) \AA

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1$	$0.84(3)$	$2.60(3)$	$3.388(3)$	$157(3)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2^{\mathrm{i}}$	$0.83(3)$	$2.56(3)$	$3.365(3)$	$164(3)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 2^{\mathrm{i}}$	$0.83(3)$	$2.75(3)$	$3.499(2)$	$150(3)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{C} 2^{\text {ii }}$	$0.81(2)$	$2.64(2)$	$3.432(2)$	$166(3)$
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	$0.86(3)$	$2.83(5)$	$3.423(3)$	$128(5)$
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{C} 2^{\mathrm{iv}}$	$0.86(4)$	$2.47(4)$	$3.317(3)$	$168(4)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{~S} 2^{\mathrm{v}}$	$0.84(3)$	$2.70(3)$	$3.366(2)$	$137(3)$
$\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{Cl} 1$	$0.86(3)$	$2.60(3)$	$3.448(3)$	$168(3)$
Symmetry codes: (i) $x-\frac{1}{2}, y-\frac{1}{2}, z ;$ (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2} ;$ (iii) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2} ;$ (iv)				
$x+1, y, z ;\left(\right.$ v) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.				

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

The author thanks the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2518).

References

Ambujam, K., Thomas Preema, C., Aruna, S., Prem Anand, D. \& Sagayaraj, P. (2007). Mater. Manuf. Process. 22, 346-350.

Asif, I., Mahmood, R., Stoeckli-Evans, H., Mateen, M. \& Ahmad, S. (2010). Acta Cryst. E66, m1393-m1394.
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zouihri, H. (2012a). Acta Cryst. E68, m260-m261.
Zouihri, H. (2012b). Acta Cryst. E68, o257.

supplementary materials

Acta Cryst. (2012). E68, m314 [doi:10.1107/S1600536812006174]

Dichloridobis(thiourea-кS)nickel(II)

Hafid Zouihri

Comment

Nickel ${ }^{(I I)}$, which has a d ${ }^{8}$ configuration, commonly exhibits octahedral, square planar and tetrahedral coordination geometries depending upon the nature of the ligands and the Crystal Field Splitting Parameter value.

In our case, the coordination complexes of $\mathrm{Ni}^{(\mathrm{II})}$ salts with thiourea show a variety of compositions and types of coordination (octahedral, tetragonal, square-planar and tetrahedral) (Asif et al. 2010). In general, the predominant coordination geometries for the $\mathrm{Ni}^{(\mathrm{II})}$-Ligand $-X\left(X=\mathrm{Cl}^{-}, \mathrm{Br}^{-}\right.$and $\left.\mathrm{I}^{-}\right)$are Tetragonal $\left(\mathrm{Ni}^{(\mathrm{II})} L_{4}\right) X_{2}$ and Octahedral $\left(\mathrm{Ni}^{(\mathrm{II})} L_{6}\right) X_{2}$. Tetrakis coordiantion of thiourea about $\mathrm{Nickel} \mathrm{Ni}(\mathrm{Th})_{4} \mathrm{Cl}_{2}$ has been found in centered tetragonal symmetry class I4 by K . Ambujam (Ambujam et al. 2007).
In former work we have reported the synthesis and crystal structure of the catena-poly[[chlorido(thiourea$\kappa S) \operatorname{copper}(\mathrm{I})]-\mu$-thiourea- $\left.\kappa^{2} S: S\right]$ complexe (Zouihri, 2012a). In this paper we report the crystal structure of $\left[\mathrm{Ni}^{(\mathrm{II})}(\mathrm{Th})_{2}\right]$ $2 \mathrm{Cl}^{-}$which has been synthetized from the (Diaminomethylidene)sulfonium chloride-thiourea (3/2) (Zouihri, 2012b).

In the title complexe compound, $\left(\mathrm{SCN}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{Ni}^{\text {(II) }} \mathrm{Cl}_{2}$, The $\mathrm{Ni}^{\text {(II) }}$ atom is four coordinated in a tetrahedral geometry by two molecules of thiourea (average $\mathrm{Ni}-\mathrm{S}$ distance $=2.3079$ (7) to 2.3177 (6) \AA) and two chloride anions (average $\mathrm{Ni}-\mathrm{Cl}$ distance $=2.2516(7)$ to $2.2726(7) \AA$) with average $(\mathrm{S}, \mathrm{Cl})-\mathrm{Ni}^{\mathrm{II}}-(\mathrm{S}, \mathrm{Cl})$ torsion angles between $96.69(2)^{\circ}$ and 115.40 $(3)^{\circ}$. The dihedral angle between the two thiourea Ligands is: $6.36(15)^{\circ}$.

The crystal structure is characterized by intramolecular and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds which lead to the formation of two-dimensional networks lying parallel to the $a b$ plane (Fig. 2 and Table 1). The networks are linked via classical intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, forming a three-dimensional arrangement (Fig. 3 and Table 1).

Experimental

To a 10 ml aqueous solution of $\mathrm{NiCl} 2(2 \mathrm{mmol})$ was added 10 ml EtOH solution of (Diaminomethylidene)sulfonium chloride-thiourea (3/2) (Zouihri, 2012b) (1.0 mmol). Colourless crystal were obtained after about one week.

Refinement

All H atoms were located from difference Fourier maps and refined isotropically, with restained distance $\mathrm{N}-\mathrm{H}=0.86$ (2) A.

Computing details

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figure 1
Molecular view of the title compound showing displacement ellipsoids drawn at the 50% probability level.

Figure 2
Projection of the title compound along the a axis showing two-dimensional networks lying parallel to the $a b$ plane, H bonds are represented by dashed lines.

Figure 3
Projection of the title compound along the b axis showing the three-dimensional arrangement of the title complexe, Hbonds are represented by dashed lines.

Dichloridobis(thiourea-kS)nickel(II)

Crystal data

$\left[\mathrm{NiCl}_{2}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=281.85$
Monoclinic, $C c$
Hall symbol: C - 2 yc
$a=8.1578$ (3) \AA
$b=11.8183$ (5) \AA
$c=10.8526$ (6) \AA
$\beta=103.869$ (2) ${ }^{\circ}$

$$
\begin{aligned}
& V=1015.81(8) \AA^{3} \\
& Z=4 \\
& F(000)=568 \\
& D_{\mathrm{x}}=1.843 \mathrm{Mg} \mathrm{~m} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 289 \text { reflections } \\
& \theta=1.8-26.7^{\circ} \\
& \mu=2.79 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=100 \mathrm{~K}$

Prism, colourless

Data collection

Bruker APEXII CCD detector diffractometer

Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.322, T_{\text {max }}=0.622$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.045$
$S=1.08$
1695 reflections
132 parameters
10 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$0.42 \times 0.37 \times 0.17 \mathrm{~mm}$

4883 measured reflections
1695 independent reflections
1678 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-9 \rightarrow 8$
$k=-14 \rightarrow 14$
$l=-13 \rightarrow 13$

Hydrogen site location: inferred from neighbouring sites
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0205 P)^{2}+0.1021 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.15$ e \AA^{-3}
Absolute structure: Flack (1983), 745 Friedel pairs
Flack parameter: 0.069 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Ni1	$0.15345(3)$	$0.18215(2)$	$0.53899(3)$	$0.03234(9)$
C12	$0.03840(8)$	$0.33531(5)$	$0.61305(6)$	$0.03892(15)$
S2	$0.33740(7)$	$0.22386(7)$	$0.41358(6)$	$0.04019(16)$
S1	$-0.05478(8)$	$0.10041(6)$	$0.38067(5)$	$0.03680(15)$
C11	$0.26641(9)$	$0.06856(6)$	$0.70409(7)$	$0.04738(16)$
C1	$-0.1912(3)$	$0.03547(18)$	$0.4566(2)$	$0.0312(5)$
N1	$-0.1424(3)$	$0.0014(2)$	$0.5748(2)$	$0.0427(5)$
N2	$-0.3484(3)$	$0.0180(2)$	$0.3936(2)$	$0.0419(5)$
C2	$0.5326(3)$	$0.2585(2)$	$0.5057(2)$	$0.0341(5)$
N3	$0.6387(3)$	$0.3127(2)$	$0.4532(3)$	$0.0535(7)$
N4	$0.5794(3)$	$0.2294(3)$	$0.6260(2)$	$0.0562(7)$
H1A	$-0.042(3)$	$-0.001(3)$	$0.618(3)$	$0.054(10)^{*}$
H2A	$-0.412(4)$	$-0.012(3)$	$0.434(3)$	$0.052(9)^{*}$

H3A	$0.597(8)$	$0.333(4)$	$0.376(3)$	$0.13(2)^{*}$
H4A	$0.672(3)$	$0.255(3)$	$0.667(3)$	$0.067(11)^{*}$
H1B	$-0.217(4)$	$-0.033(3)$	$0.599(3)$	$0.048(9)^{*}$
H2B	$-0.392(4)$	$0.048(2)$	$0.327(2)$	$0.039(8)^{*}$
H3B	$0.737(4)$	$0.327(4)$	$0.501(5)$	$0.095(17)^{*}$
H4B	$0.513(4)$	$0.186(2)$	$0.656(3)$	$0.046(10)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.02675(16)$	$0.03985(16)$	$0.03008(15)$	$-0.00044(13)$	$0.00613(11)$	$-0.00065(13)$
C12	$0.0308(3)$	$0.0446(3)$	$0.0418(3)$	$-0.0015(2)$	$0.0094(3)$	$-0.0120(3)$
S2	$0.0226(3)$	$0.0721(4)$	$0.0250(3)$	$-0.0055(3)$	$0.0039(2)$	$-0.0010(3)$
S1	$0.0339(3)$	$0.0500(4)$	$0.0255(3)$	$-0.0108(3)$	$0.0052(2)$	$-0.0026(3)$
C11	$0.0441(4)$	$0.0561(4)$	$0.0385(4)$	$0.0094(3)$	$0.0032(3)$	$0.0128(3)$
C1	$0.0307(12)$	$0.0278(11)$	$0.0344(13)$	$-0.0013(9)$	$0.0063(10)$	$-0.0036(10)$
N1	$0.0366(13)$	$0.0507(13)$	$0.0385(12)$	$-0.0128(10)$	$0.0046(10)$	$0.0096(9)$
N2	$0.0301(12)$	$0.0458(14)$	$0.0462(14)$	$-0.0054(10)$	$0.0020(10)$	$0.0098(11)$
C2	$0.0230(12)$	$0.0414(13)$	$0.0366(13)$	$0.0039(10)$	$0.0045(9)$	$-0.0070(10)$
N3	$0.0270(13)$	$0.0680(18)$	$0.0648(19)$	$-0.0072(11)$	$0.0099(13)$	$0.0030(14)$
N4	$0.0326(14)$	$0.095(2)$	$0.0335(13)$	$-0.0043(14)$	$-0.0065(11)$	$-0.0040(14)$

Geometric parameters ($A_{A},{ }^{\circ}$)

Ni1-Cl1	2.2516 (7)	N1-H1B	0.822 (18)
Ni1-Cl2	2.2726 (7)	N2-H2A	0.840 (19)
Ni1-S2	2.3079 (7)	N2-H2B	0.806 (18)
Ni1-S1	2.3177 (6)	C2-N3	1.312 (4)
S2-C2	1.715 (2)	C2-N4	1.315 (4)
S1-C1	1.716 (2)	N3-H3A	0.87 (2)
$\mathrm{C} 1-\mathrm{N} 1$	1.312 (3)	N3-H3B	0.86 (2)
$\mathrm{C} 1-\mathrm{N} 2$	1.317 (3)	N4-H4A	0.836 (19)
N1-H1A	0.843 (19)	N4-H4B	0.865 (19)
Cl1-Ni1-Cl2	108.56 (3)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	120 (3)
Cl1-Ni1-S2	113.37 (3)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	116 (3)
C12-Ni1-S2	114.86 (3)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	124 (2)
Cl1-Ni1-S1	115.40 (3)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	117 (4)
Cl2-Ni1-S1	107.62 (3)	N3-C2-N4	119.7 (3)
S2-Ni1-S1	96.69 (2)	N3-C2-S2	118.7 (2)
C2-S2-Ni1	110.56 (9)	N4-C2-S2	121.6 (2)
C1-S1-Ni1	105.95 (8)	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}$	114 (4)
N1-C1-N2	119.3 (2)	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	117 (4)
N1-C1-S1	121.80 (19)	H3A-N3-H3B	128 (6)
N2-C1-S1	118.9 (2)	$\mathrm{C} 2-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~A}$	116 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	126 (3)	$\mathrm{C} 2-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	118 (3)
C1-N1-H1B	113 (3)	H4A-N4-H4B	126 (4)

supplementary materials

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{Cl1}$	$0.84(3)$	$2.60(3)$	$3.388(3)$	$157(3)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl2} 2^{\mathrm{i}}$	$0.83(3)$	$2.56(3)$	$3.365(3)$	$164(3)$
$\mathrm{N} 2 — \mathrm{H} 2 A \cdots \mathrm{Cl2}$				
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{Cl2} 2^{\mathrm{ii}}$	$0.83(3)$	$2.75(3)$	$3.499(2)$	$150(3)$
$\mathrm{N} 3 — \mathrm{H} 3 A \cdots \mathrm{Cl1} 1^{\mathrm{iii}}$	$0.81(2)$	$2.64(2)$	$3.432(2)$	$166(3)$
$\mathrm{N} 3 — \mathrm{H} 3 B \cdots \mathrm{Cl2} 2^{\mathrm{iv}}$	$0.86(3)$	$2.83(5)$	$3.423(3)$	$128(5)$
$\mathrm{N} 4 — \mathrm{H} 4 A \cdots \mathrm{~S} 2^{\text {v }}$	$0.86(4)$	$2.47(4)$	$3.317(3)$	$168(4)$
$\mathrm{N} 4 — \mathrm{H} 4 B \cdots \mathrm{Cl1}$	$0.84(3)$	$2.70(3)$	$3.366(2)$	$137(3)$

Symmetry codes: (i) $x-1 / 2, y-1 / 2, z$; (ii) $x-1 / 2,-y+1 / 2, z-1 / 2$; (iii) $x+1 / 2,-y+1 / 2, z-1 / 2$; (iv) $x+1, y, z$; (v) $x+1 / 2,-y+1 / 2, z+1 / 2$.

